
40 The Delphi Magazine Issue 25

Under Construction:
Delphi 3 Web Modules, Part 2
by Bob Swart

This month, we’ll continue our
exploration of the Delphi 3

Client/Server Web Modules. We’ll
see how to write dynamic or
parameterised queries, save state
information and eat some cookies
along the way.

Last time, we explored the Web
Module Wizard, along with a few of
the new Delphi 3 Client/Server
internet components. Specifically,
we examined the TWebDispatcher,
TPageProducer and TDataSetTable-
Producer. This time, we’ll take a
closer look at the TQueryTablePro-
ducer and find out how we can send
data back to the server instead of
just generating a dynamic HTML
page on the server.

TQueryTableProducer
At first sight, a TQueryTableProducer
component looks just like a TData-
SetTableProducer (after all, a Query
is just another DataSet, right?). The
difference can be found in the fact
that the Query is a special DataSet,
not just any DataSet, so the compo-
nent can prepare for the fact that
it’s a Query. In fact, this brings us
immediately to our second topic:
sending input (data) back to the
web server. Last time, we exam-
ined several ways to generate
dynamic HTML pages using Web
Modules, but that’s only half of the
story. Say we want to look again at
the BIOLIFE table, but this time we
only want to see the fish bigger
than 42 centimetres. How would
we do this? The obvious way is to
use a query on the server, and con-
nect the output to the TQueryTable-
Producer just like we did last time.
But what if we want to dynamically
change this number 42? That’s
where the CGI protocol (Common
Gateway Interface) comes in again:
we need to write a HTML CGI-Form
where the end-user can enter the
required number of centimetres
and send that data to the web

server so a dynamic query (or a
parameterised query) can be per-
formed which results in truly
dynamic output.

Let’s start on the server side
first. For those of you who didn’t
read last month’s column: start a
new Web Module project by File |
New, select Web Server Application
from the repository and click OK to
get the New Web Server Applica-
tion Wizard. Here, you can select
the required protocol to use: CGI,
WinCGI or ISAPI/NSAPI. Like last
time, I select either CGI or WinCGI,
since I can test and debug these
application more easily on my
local machine with IntraBob ver-
sion 2.01 (on last month’s disk and
also available on my website).
After you select the protocol to use
you get a new empty project with a
Web Module.

Now, to get started for this time,
simply drop a TQueryTableProducer
from the Internet tab on the Web
Module. This control will get con-
nected to our dynamic query (or in
fact our parameterised query, as
we’ll find out shortly), and gener-
ate the dynamic HTML pages from
the query result. Right next to the
TQueryTableProducer component,
we need to put a TQuery compo-
nent. Set the DatabaseNameproperty
to DBDEMOS and enter the following
text in the SQL property:

SELECT * FROM BIOLIFE WHERE

(BIOLIFE."Length (cm)" > :LENGTH)

This parameterised query will
return all fields for every record in
BIOLIFE where the field Length (cm)
is greater than a run-time specified
length, as passed in parameter
LENGTH. Next, we need to specify the
type of the LENGTH parameter by
clicking on the Params property in
the Object Inspector.

The type is Integer, and the
default value is 0. We can test the

SQL syntax by double-clicking on
the Active property of the TQuery
component. If it gets set to True,
then we’ve built a valid SQL query.

Now that we’ve entered the
Query, it’s time to connect it to the
TQueryTableProducer. Just click on
the TQueryTableProducer compo-
nent on the Web Module, go to the
Object Inspector and set the Query
property to Query1. Now the Query-
TableProducerwill use the resulting
database of the Query to generate
the dynamic HTML pages. And
that’s not all. The QueryTablePro-
ducer is not only able to get the
Query result, it is also able to set the
Query input parameters (LENGTH in
our case). For that, we need to
write an HTML CGI Form that con-
tains an INPUT field with name
LENGTH (ie the name of the parame-
ter inside the Query). Whenever the
data of the Form is sent to the Web
Server application, a match is
made between the INPUT field
names and the Query Parameter
names. If a match is found, then the
value of the INPUT field is automati-
cally substituted for the Query
parameter. In our case, this means
we have to write a simple HTML
CGI Form that contains an INPUT
field with name LENGTH that should
hold the length in centimetres of
the records from the BIOLIFE table
we want to see. This is where we
might notice something funny
about Delphi: we get all this great
support for writing Web Modules
with CGI/WinCGI and ISAPI/NSAPI
support, but yet we have to write
our own HTML CGI Forms to
handle the input of these Web Mod-
ules. Of course, we could use
IntraBuilder to generate the HTML
forms for this purpose and connect
them to the Delphi 3 Web Modules,
but somehow that sounds some-
what less than obvious. For now, a
HTML CGI Form that we can use is
shown in Listing 1.

September 1997 The Delphi Magazine 41

➤ Figure 1

Note that the new Table-2-CGI
Wizard is now available on my web-
site (www.drbob42.com) which
will automatically generate an
HTML CGI Form similar to Listing 1,
based on information from a table
and feedback from the user (the
names of the parameters and pos-
sible pre-filled values for fields).

All we need to do now is create a
default WebActionItem (see last
issue) and make sure the OnAction
event contains the code in Listing 2
to redirect the output from the
TQueryTableProducer to the final
output of the web server app.

As long as we remember to keep
the Active property of the Query set
to True, there’s no other code we
need to write at this time. Let’s just
save it as BIOLIFE, compile the new
project and try to run it with Intra-
Bob v2.01. As long as we don’t
forget to specify the correct CGI-
protocol (CGI or WinCGI), we only
need to enter the minimum amount
of centimetres, like 42, and hit the
SUBMIT button. The result shows
immediately (Figure 2).

Of course, we can use the Col-
umns property (type THTMLTable-
Columns) of the QueryTableProducer
just like we did with the DataSetTa-
bleProducer component in the last
issue, and we end up in a new prop-
erty editor in which we can design
the output the way we want it.

State Of Independence
Now, say we don’t want to view the
entire output set all at once, but
say we want to view only two
records at a time, and be able to
click on a Next button to view the
next two records. For this, we need
to be able to save some informa-
tion, typically called “state infor-
mation” (ie information that holds
our current cursor and state of the
query). There are at least two ways
to save state information: using
cookies, or using hidden fields in
CGI Forms. Cookies are sent by the
server to the browser, while CGI
hidden fields are part of the HTML
CGI Form and are sent by the client
to the server as part of the next
request. When using cookies, the
initiative is with the web server,
but the client has the ability to
deny or disable a cookie. Servers

<HTML>
<BODY>
<H1>TDM #25: Web Modules (2)</H1>
<HR>
<FORM ACTION="http://www.bolesian.nl/cgi_bin/biolife.exe" METHOD="POST">
<P>
Please specify the minimum length (cm) of the Fish you want to see:

<INPUT TYPE=text NAME="LENGTH">
<P>
<INPUT TYPE=SUBMIT>
</FORM>
<HR>
</BODY>
</HTML>

➤ Listing 1

sometimes even send cookies
when you don’t ask for them,
which can be a reason why some
people don’t like cookies (like me,
for example). Delphi 3 Web Mod-
ules do have built-in support for
cookies, but I would like to explore
the alternative with you: using
hidden fields in HTML CGI Forms
to save and communicate state
information.

A hidden field is defined as any
other data-entry field in a HTML
CGI Form, except for the part that
its type is “hidden”, like:

<INPUT TYPE="hidden"
NAME="KEY" VALUE="90020">

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := QueryTableProducer1.Content;

end;

➤ Listing 2

The hidden field above has the
name key and value 90020 (which
just happens to be a valid key value
for the BIOLIFE table) and can be
queried just like any other CGI
Form input field (something we
haven’t done so far, but stay tuned,
as we’re about to).

We can save the KEY value of the
current record and use it next time
to start our query at that specific
location (ie perform enough
Query.Next operations until we’re
back at the specified KEY value
again). This also means that we
have to repeat our Query again
(remember that a CGI or WinCGI
application is executed and then

42 The Delphi Magazine Issue 25

➤ Figure 2

terminated, so it’s not just that
HTTP is stateless, the application
truly starts again, with no knowl-
edge of any previous executions.
And this of course yields the fact
that we should also save the value
of the LENGTH parameter to be able
to correctly reconstruct the query
for the subsequent executions.

But first we need to limit the
number of records in our gener-
ated HTML page to 2. For this, we
need to set the MaxRows property of
the QueryTableProducer from 20 to
2. Now, if we recompile the project
and run it again, we only get the
first two records of the Query. We
need to do something more to be
able to walk through the entire
resultset of the Query.

Let’s drop a TPageProducer on
the Web Module, and edit the
HTMLDoc property to contain the
following lines:

<FORM ACTION="biolife.exe/query"
METHOD="POST">

<INPUT TYPE=HIDDEN NAME="KEY"

VALUE="<#KEY>">

<INPUT TYPE=HIDDEN NAME="LENGTH"

VALUE="<#LENGTH>">
<P>

<INPUT TYPE=SUBMIT

VALUE="Show next two records">

</FORM>

Note that this HTML document
contains a CGI Form with the two
required hidden input fields (one
for the current KEY value and one
for the LENGTH parameter for the
query itself) and a Submit button
(with caption Show next two
records). The VALUE part of the
hidden field conforms to the TAG
syntax, so we can use the OnTag
event of the PageProducer to
replace the KEY tag with the value
of the current key in the current
record of the Query, as in Listing 3.

Note that we assume that Query1
is Active (which it still is) and that
Fields[0] holds the key value
(which it in this case indeed does).
In general, you may want to do a
FieldByName or just insert the fields
in the field editor and call them by
name. Note, however, that this
also works to place the value of the
Key inside the dynamic HTMLDoc of
the PageProducer.

Now, one of the nice features
about the content of the different
Delphi 3 C/S internet components
is the fact that you can combine
them into one. We can just add the
PageProducer1.Content to the Que-
ryTableProducer1.Content to get a
bigger final Response.Content (see
Listing 4).

Note that since the PageProduc-
er1.Content method is called after
the QueryTableProducer1.Content
could perform it’s job, the PagePro-
ducer can actually get to the cur-
rent KEY value of the Query, which is
valid after the current Query
records have been show (ie the
next valid record).

Now, all we need to do is make
sure that the above Action item

procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin
if TagString = ‘KEY’ then
ReplaceText := Query1.Fields[0].AsString;

if TagString = ‘LENGTH’ then
ReplaceText := Query1.Params.ParamValues[‘LENGTH’];

end;

➤ Listing 3

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content :=
QueryTableProducer1.Content +
PageProducer1.Content;

end;

➤ Listing 4

can position the Query to the right
position. For that, we need to be
able to distinguish between a first
time execution of a Query (with
another value of the LENGTH
parameter), and a subsequent
request for record from the same
Query. We can do this by using a dif-
ferent action, as was hinted in the
HTMLDoc already (you did notice the
biolife.exe/query Action part,
didn’t you?) combined with a Data-
SetTableProducer component with
MaxRows properties set to the same
value of 2.

So, we just go back to the Web
Module, click on the Actions com-
ponent editor, add a second action
with PathInfo set to /query and
enter the following code in the

September 1997 The Delphi Magazine 43

➤ Figure 3

OnAction event of this new Action.
(See Listing 5).

First, we need to Close the Query
and set the parameter LENGTH to the
value that we can obtain from the
TWebRequest parameter. TWebRe-
quest has a ContentFields of type
TStrings in case of a POST method
and we can use the Valuesproperty
to get the required values by name
(such as Values(‘LENGTH’) and
Values(‘KEY’)). Quite handy. After
we’ve obtained the previous Key
value and re-opened the Query, we
only need to perform Next steps
until we’ve reached (or exceeded)
our previous Key value. After we’ve
successfully positioned the Query
cursor, it’s time to produce the
table content from the DataSetTa-
bleProducer1, followed by the Page-
Producer1which again lists the Show
next two records button and the
two hidden fields, with the newly
updated Key value, of course.

Now, why did we have to use a
DataSetTableProducer1 in the first
place? Couldn’t we just re-use the
same QueryTableProducer, if only to
avoid having to set the Query
LENGTH parameter by hand? No, we
couldn’t (I know, I tried), because
the QueryTableProducer component
will try to map every CGI data-entry
field to a Query parameter. And
while this works for the LENGTH
parameter, the KEY field cannot be
assigned to anything in the Query,
so this actually results in a Server
Error 500. Not funny. Maybe this
might be a reason to try and derive
from either the parent TDSTable-
Producer or the TQueryTablePro-
ducer itself, and try to make this
parameter mapping mechanism a
little more flexible.

If we take a look at the generated
HTML source code (Figure 4), we
can see the two hidden fields.

For each execution of the bio-
life.exe web application, a new KEY
value is computed and entered in
as hidden field in the HTML part
that the PageProducer generates.
And so is the LENGTH field repeated
every time, so we’re sure we’re
actually executing the same query
over and over again (but just want
to see different result set records).

Anyway, after all these exer-
cises, the complete source code

procedure TWebModule1.WebModule1WebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var Key: Integer;
begin
Query1.Close;
Query1.Params[0].AsInteger := StrToInt(Request.ContentFields.Values[‘LENGTH’]);
try
Key := StrToInt(Request.ContentFields.Values[‘KEY’]);

except
Key := 0

end { 0 for no key };
Query1.Open;
while Query1.Fields[0].AsInteger < Key do Query1.Next;
{ now create output page(s) }
Response.Content := DataSetTableProducer1.Content + PageProducer1.Content;

end;

➤ Listing 5

➤ Figure 4

44 The Delphi Magazine Issue 25

for the Web Module UNIT1.PAS is
show in Listing 6.

A final reason why we have to
use a TDataSetTableProducer and
cannot use the TQueryTablePro-
ducer to show the next few records
form a Query is the fact that the
TQueryTableProducer assigns the
query parameters (if any) and
opens the query in the Contents
method. In other words, while we
may set the Query component to
the exact position where we want it
to be (like we can do for the TData-
SetTableProducer), this won’t work
with the TQueryTableProducer
which will just re-execute the
query all over again.

Cookie Monster
Now that we know how to use
hidden fields, can we do it a little
bit differently as well? Yes, we can
still use cookies if we want. In fact,
the project source code on this
month’s disk will contain {$IFDEF}
compiler directives to let you
chose between using a hidden field
or a cookie to send the current KEY
value (the LENGTH query parameter
field is always passed as hidden
field, but I leave it up to you to pass
this field as a cookie as well).

First of all, we need to set the ini-
tial value of the cookie in the WebAc-
tionItem1Action event. Cookies
can be set as part of the Response,
using the SetCookieField method.
Like CGI values, a cookie is of the
form NAME=VALUE, so we can put a
KEY=value in there without much
trouble (Listing 7).

Note that we’re using a
TStringList to set up a list of
cookie values. Each list of cookies
can have a Domain and Path associ-
ated with it, to indicate which URL
the cookie should be sent to. You
can leave these blank, of course.
The fourth parameter specifies the
expiration date of the cookie,
which is set to Now+1 day, so next
time the user is back the cookie will
have expired. The final argument
specifies whether or not the cookie
is sent over a secure connection
(which I just set to False). The
above code results in the first
cookie with value KEY=90140.

Watch closely, for the above
cookie was actually the first cookie

every programmatically baked by
me. I’m still not convinced that
cookies are the best solution in all
cases, but it’s good to know they’re
there when you need them...

Now, assuming the user accepts
the cookie, then having set the
cookie is still only half the work. In
the WebModule1WebActionItem2Ac-
tion event we need to read the
value of the cookie, to determine

how far to step with the Query to be
able to show the next few records.
In this case, cookies are part of the
Request class, just like the Content-
Fields, and they can be queried
using the CookieFields property
(Listing 8).

Other than that, cookies work
just like any (hidden or visual) con-
tent field. Just remember that
while a content field is part of your

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, HTTPApp, Db, DBTables, DBWeb;

type
TWebModule1 = class(TWebModule)
QueryTableProducer1: TQueryTableProducer;
Query1: TQuery;
PageProducer1: TPageProducer;
DataSetTableProducer1: TDataSetTableProducer;
procedure WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

procedure PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings;
var ReplaceText: String);

procedure WebModule1WebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

private
public
end;

var WebModule1: TWebModule1;
implementation
{$R *.DFM}
procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := QueryTableProducer1.Content + PageProducer1.Content;

end;
procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin
if TagString = ‘KEY’ then
ReplaceText := Query1.Fields[0].AsString;

if TagString = ‘LENGTH’ then
ReplaceText := Query1.Params.ParamValues[‘LENGTH’];

end;
procedure TWebModule1.WebModule1WebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var Key: Integer;
begin
Query1.Close;
Query1.Params[0].AsInteger := StrToInt(Request.ContentFields.Values[‘LENGTH’]);
try
Key := StrToInt(Request.ContentFields.Values[‘KEY’]);

except
Key := 0

end { 0 for no key };
Query1.Open;
while Query1.Fields[0].AsInteger < Key do Query1.Next;
{ now create output page(s) }
Response.Content :=
DataSetTableProducer1.Content +
PageProducer1.Content;

end;
end.

➤ Listing 6

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

{$IFDEF COOKIES}
var
Cookies: TStringList;

{$ENDIF}
begin
Response.Content := QueryTableProducer1.Content + PageProducer1.Content;

{$IFDEF COOKIES}
Cookies := TStringList.Create;
Cookies.Add(‘KEY=’+Query1.Fields[0].AsString);
Response.SetCookieField(Cookies,’’,’’,Now+1,False);
Cookies.Free;

{$ENDIF}
end;

➤ Listing 7

September 1997 The Delphi Magazine 45

procedure TWebModule1.WebModule1WebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
Key: Integer;

{$IFDEF COOKIES}
var
Cookies: TStringList;

{$ENDIF}
begin
Query1.Close;
Query1.Params[0].AsInteger := StrToInt(Request.ContentFields.Values[‘LENGTH’]);
try
{$IFDEF COOKIES}
Key := StrToInt(Request.CookieFields.Values[‘KEY’]);

{$ELSE}
Key := StrToInt(Request.ContentFields.Values[‘KEY’]);

{$ENDIF}
except
Key := 0

end { 0 for no key };
Query1.Open;
while Query1.Fields[0].AsInteger < Key do Query1.Next;
{ now create output page(s) }
Response.Content := DataSetTableProducer1.Content + PageProducer1.Content;

{$IFDEF COOKIES}
Cookies := TStringList.Create;
Cookies.Add(‘KEY=’+Query1.Fields[0].AsString);
Response.SetCookieField(Cookies,’’,’’,Now+1,False);
Cookies.Free;

{$ENDIF}
end;

➤ Listing 8

request, so should always be up to
date, a cookie may have been
rejected, resulting in a possible
older value (which was still on
your disk a few sessions ago).

To test this, just run the BIOLIFE
web application with cookies
enabled, and (just for the fun of it)
reject a cookie from time to time.
You’ll notice that if you reject the
cookie, the old value will be used
instead. So, I can only repeat that I
prefer to use hidden fields, like we
used in the first solution of this
column.

ISAPI/NSAPI Notes
So far we’ve seen good results
using CGI and WinCGI. These web
applications, however, are just
that: web applications. For every
request they get started, execute
and then terminate while returning
their dynamic generated HTML
pages. This usually takes more
than one second, since loading the
application, loading the BDE, per-
forming the query, unloading eve-
rything just takes a while (even on

a local machine). And while this
may not sound too bad, imagine
several people using the same CGI
application at the same time. Don’t
think that won’t happen.

My website gets almost 1,000
hits each day and I’m just doing

this for fun (ie I am not a commer-
cial website selling items), so it can
get worse (or better, depending on
your point of view). For my 1,000
hits each day, that means about 42
users each hour (give or take a
few), or just under one user each

46 The Delphi Magazine Issue 25

minute. Considering the fact that
most users will spend more than a
few minutes at my site (maybe
even ten or fifteen minutes), I can
predict that at any given time, at
least a few users, like a dozen, will
be simultaneously browsing my
website. While not all of them will
be using my CGI applications,
every one of them will at least fire
my new Hit Counter (also a CGI
application), so my website and its
users will not go unnoticed by my
WinNT web server.

Of course, we can use ISAPI or
NSAPI web server extension DLLs,
which are not just stand-alone
applications but DLLs that get
loaded only once and unload when
the server gets down. These avoid
the time you need to load and
unload your web application, and
can also avoid (re-)initialisation of
the BDE. This last issue needs a
little more attention: when using
the BDE in an ISAPI/NSAPI DLL,
you’re in fact offering the web surf-
ers a multi-threaded web server
application they can use: while
each CGI application gets loaded

for every request, there is only one
instance of the ISAPI/NSAPI DLL
loaded. To avoid problems with
session names, one should give
each thread its own session, by
adding a TSession component to
the Web Module and setting the
AutoSession property to True. This
will ensure that each thread will
get a session with a unique name
generated.

Next Time...
Next month, we’ll use the informa-
tion from this month’s column to
write a final Web Module sample
application, the one I mentioned a
little bit earlier: a homepage “hit”
counter, complete with registra-
tion and statistical analysis (check
my website at www.drbob42.com
for a preview of the results). Both a
Web Module and a non Web
Module Delphi 3 version will be
available, showing the differences
in ease-of-use, maintenance, code
size, speed, etc.

Also next time Chad Hower will
have the promised article about
Portcullis, the Internet Application

Gateway from ShoreLine, which
will specifically be about how to
write IAG-compatible components
(heavy work commitments meant I
had to bow out, so Chad’s on his
own for this one!).

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a profes-
sional knowledge engineer tech-
nical consultant using Delphi and
Borland C++Builder for Bolesian
(www.bolesian.com), a freelance
technical author for The Delphi
Magazine and co-author of The
Revolutionary Guide to Delphi 2.
Bob is now co-working on Delphi
Internet Solutions, a new book
about Delphi and the internet
and intranet. In his spare time,
Bob likes to watch video tapes of
Star Trek Voyager and Deep Space
Nine with his 3-year old son Erik
Mark Pascal and his 9-month
old daughter Natasha Louise
Delphine.

	TQueryTableProducer
	State Of Independence
	Cookie Monster
	ISAPI/NSAPI Notes
	Next Time...

